Basal forebrain volumes predict circuit specific functional sensitivity to muscarinic M₁ receptor antagonist biperiden on cognition.

Geor Bakker PhD^{1,2,3}, Pradeep J. Nathan PhD^{1,4,5}, Alex Godwood MSc¹, Claudia Vingerhoets PhD^{2,3}, Jan Booij PhD MD², Oswald Bloemen PhD MD^{3,6}, Matthan W. Caan PhD², and Therese van Amelsvoort PhD MD³.

¹Sosei Heptares, Cambridge, United Kingdom, ²Department of Radiology and Nuclear Medical Centers, location AMC, Netherlands, ³ Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands, ⁴ Brain Mapping Unit, Department of Psychiatry, University of Cambridge, United Kingdom, ⁵School of Psychological Sciences, Monash University, Melbourne, Australia, ⁶ GGZ Centraal Center for Mental Health Care Innova, Netherlands.

Background

- The basal forebrain (BF) cholinergic neurons provide the major source of cholinergic innervation to the cortex and hippocampus through two circuits A: Nucleus Basalis of Meynert (NBM) cortical circuitry & B: Septal-Hippocampal circuitry. Cholinergic innervation of these circuits plays a key role in modulation of cognition through muscarinic M₁ receptors.
- BF cholinergic loss predicts faster cognitive deterioration in neurodegenerative disorders, including Alzheimer's Disease (AD).
- Relationship between BF nuclei volume and sensitivity to M₁ receptor antagonism is unknown and may underlie greater cognitive impairment in AD.
- BF volume may be an important biomarker to stratify patients that may be more sensitive to drugs targeting directly or indirectly the cholinergic system.

Objective:

- To examine the cognitive deficit profile associated with M₁ antagonism by biperiden in healthy volunteers and a cognitive impaired group with psychotic disorders (appr. 1.5 SD lower).
- Determine whether BF volumes predict cognitive sensitivity to biperiden:
 - Determine relationship between CH4 volume and biperiden effect on cortically mediated cognitive domains (A/ A.1).
 - Determine whether CH1,2,3 volumes predict biperiden effects on septal –hippocampal mediated episodic memory (B/B.1).

Methods

- Healthy volunteers and subjects diagnosed with a psychotic disorder were selected for the study.
- A randomised, placebo controlled, counterbalanced design was used in which all participants received placebo or 4 mg of M₁ antagonist biperiden with a minimal washout period of 7 days.
- BF volumes were quantified from T1-weighted structural MRI scans. All BF volumes measures were normalised for total brain segmentation volumes (test-retest reliability: ICC:0.97).
- Cambridge Neuropsychological Test Automated Battery (CANTAB) was used to test cognitive sensitivity to biperiden.

Healthy volunteers	Cognitively impaired group (psychotic disorder)	Visit 1.	Visit 2.
--------------------	--	----------	----------

Demographi
Variables

Ν	30	29
Gender (M/F)	20/10	21/8
Age (yrs)	25.54(5.14)	21.56 (4.75)
IQ	108.07 (16.60)	101.10 (15.12)

Results

Design

Conclusions

- Planning and episodic memory (both verbal and visual) seemed more sensitive to M₁ modulation by biperiden than other cognitive domains.
- CH4 and CH1,2,3 nuclei volumes can predict circuitry specific cognitive responsivity to M₁ modulation.
- M₁ receptor modulation of executive functioning and episodic memory (both verbal and visual) may depend on the integrity of basal forebrain cholinergic neurons.
- BF nuclei volume may be a potential biomarker predictive of superior cognitive efficacy of drugs targeting the cholinergic system, including cholinesterase inhibitors, M₁ and M₄ receptor agonists and positive allosteric modulators.

© 2019 Heptares Therapeutics Limited